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Abstract
We present a kinetic study of an enzyme reaction that takes place with slow-binding inhibition where the immediate product
undergoes a spontaneous or induced process of decomposition. A kinetic study of an enzyme process, in which a slow-binding
inhibition process and a decomposition of the immediate product of the reaction take place simultaneously is performed. The
corresponding explicit concentration-time equations were obtained. Using the analytical solutions obtained, which were
tested numerically, we suggest a procedure that allows the discrimination between the particular cases considered and the
evaluation of the principal kinetic parameters of the reaction.

Keywords: Enzyme inhibition, enzyme reactions, rapid equilibrium, slow-binding inhibition, unstable product, enzyme
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Introduction

Enzyme reactions exist, in which the product

instability influences the evaluation of the kinetic

parameters [1–6]. Enzyme reactions, in which the

products are unstable and undergo a chemical

decomposition, deprotonation or other destabilization

by first- or second-order kinetics, have been described

previously [1–6]. The case of an unstable product has

been exemplified by the kinetic study of the oxidation

of 3,4-dihydroxyphenylethylamine (dopamine) to the

corresponding o-quinone catalyzed by the enzyme

tyrosinase (monophenol, dihydroxy-L-phenylalanine:

oxygen oxido-reductase, EC 1.14.18.1) (Garrido

et al.) [7]. It has been shown that the direct product

of the enzyme catalysis is o-dopamine-quinone-Hþ,

which is converted non-enzymatically to o-dopamine-

chrome by the cyclization of the molecule following a

Michael intramolecular 1,4-addition.

Kinetic analysis of enzyme reactions, in which

processes of slow-binding inhibition take place, have

often been reported in the literature [8–11].

In some cases the inhibitor and the enzyme interact

slowly; in others, an enzyme-inhibitor complex,

which is formed by a slow isomerization, is formed

rapidly. Examples are the inhibition of the

catecholase activity of grape polyphenol oxidase

by tropolone [12] or the inhibition by 3-hydroxy-4-

phenylthiazole-2 (3H)-thione (3H4PTT) of dopa-

mine beta-monooxygenase (DbetaM) [13]. The

slow-binding inhibition of jack bean urease

by 1,4-benzoquinone (BQ) and 2,5-dimethyl-1,

4-benzoquinone (DMBQ) has recently been studied

[14]. Sometimes, a single species (the free enzyme,

the substrate, the enzyme-substrate complex, an

inhibitor or the product of the reaction) is unstable

[15].
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In previous work on the slow-binding inhibition of

tyrosinase of frog epidermis by m-cumaric acid [16],

the reaction was monitored by measuring the

accumulated final product in the reaction media

(dopachrome) which is formed from the correspond-

ing o-quinone generated by the enzyme in its action on

L-dopa. In this case the kinetic analysis made was very

simple corresponding to only one exponential term in

the time course equation used. To obtain the

experimental results it was conducted at pH ¼ 7 in

order that the apparent rate constant corresponding to

the transformation of o-dopaquinone reaches a high

value in comparison with the time-dependent

inhibition, so that the transient phase was controlled

by this latter process. Nevertheless, at lower

pH-values both processes overlap in time and in

these situations, at the present relatively seldom, it

a new and more complete kinetic analysis is

necessary which allows the carrying out of these type

of studies.

In this paper, a kinetic analysis of a Michelis-

Menten mechanism is carried out in which a slow-

binding inhibition process occurs and, moreover, the

immediate product is unstable. We assumed an initial

steady-state in the catalytic route and a reversible

reaction step, in which the free enzyme and the

enzyme-substrate complex rapidly reach equilibrium,

and studied the progress curve of the product, P,

generated directly by the enzyme, as well as that one

corresponding to the compound, R, obtained from

P. Subsequently, we evaluated the kinetic parameters

of the reaction. A numerical example was outlined

and solved to demonstrate the quality of the method

suggested. The results have been compared with

those obtained by the numerical solution of the

differential equations that describe the kinetics of the

process.

Theory

The general mechanism studied in this paper is shown

in Scheme 1.

Notation and definitions

[E] Enzyme concentration

[E]0 Initial enzyme concentration

[S] Substrate concentration

[S]0 Initial substrate concentration

[I] Inhibitor concentration

[I]0 Initial inhibitor concentration

[ES] Concentration of the enzyme-substrate

complex

[EI], [EI*] Concentrations of the enzyme-inhibitor

complexes

[P] Product concentration

[R] Concentration of the species into which P

is transformed

[P]1 Concentration of P obtained at the final

stage of the reaction

[P]max Maximal value of [P]

[P]inflex [P] corresponding to the inflexion point

of the progress curve of P

tmax Time corresponding to [P]max

tinflex Time corresponding to [P]inflex

t1 Time elapsing to tmax at which ½P� ¼ ½P�1
Km Michaelis constant, ðk2 þ k7Þ=k1

KI Equilibrium constant, k4/k3

Equation (A1) of the Appendix describes the

kinetics of Scheme 1. This equation does not admit

any analytical solution, but approximate solutions can

be derived, if one assumes that:

½S�0; ½I�0 @ ½E�0

½P� þ ½R� ! ½S�0

)
ð1Þ

In this case:

½S� < ½S�0

½I� < ½I�0

)
ð2Þ

After the insertion of equation (2) into equation

(A1) of the Appendix, the latter becomes linear and

has, therefore, analytical solutions. The explicit

equations for the concentrations of P and R are:

½P� ¼ ½P�1 þ A0e
2jt þ

X3

h¼1

Ahe
lht ð3Þ

and

½R� ¼ r0 þ j½P�1t 2 A0e
2jt þ

X3

h¼1

rhe
lht ð4Þ

where lh ðh ¼ 1; 2; 3Þ (always negative or complex

with a negative real part) are the eigenvalues of the

coefficients matrix of equation (A1) of the Appendix,Scheme 1.
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i.e., the roots of the equation:

ðlþ jÞðl3 þ F1l
2 þ F2lþ F3Þ ¼ 0 ð5Þ

The corresponding expressions of the coefficients of

equation (5) are given in the Appendix.

If we assume a pseudo steady-state [17–21] from

the onset of the reaction in the catalytic route then:

k1½S�0; k2; k7 @ k3½I�0; k4; k5; k6; j ð6Þ

In this case, taking equations (6) and (A11)–(A16)

into account, equation (5) can be written:

ðlþ jÞðl2 l3Þðl
2 þ ðF2=F1Þlþ F3=F1Þ ¼ 0 ð7Þ

According to equations (6) and (A17)–(A20) of

Appendix, jl3j @ jl1j; jl2j and, therefore, the term of

equations (3) and (4) containing the parameter l3 can

be neglected. The latter will have only three

exponential terms: 2 j, l1 and l2.

Particular cases:

1. In some cases the formation of the enzyme-

inhibitor complex, EI, is very fast and is followed by a

slow isomerization to EI* [10]; then, assuming

conditions of rapid equilibrium, we have:

k1½S�0; k2; k7; k3½I�0; k4 @ k5; k6; j ð8Þ

In this case, it can be demonstrated easily that

jl2j @ jl1j and that the term of the explicit equation of

the product P or R containing l2 can be neglected.

Therefore, if we set l ; l1; the corresponding

equations for [P] and [R] will be:

½P� ¼ ½P�1 þ A0e
2jt þ Aelt ð9Þ

½R� ¼
A0l2 Aj

l
þ j½P�1t 2 A0e

2jt þ
Aj

l
elt ð10Þ

The parameters of these equations are given in the

Appendix.

2. In the case in which k5 ¼ k6 ¼ 0; the eigenvalues

of the corresponding matrix of coefficients of equation

(1) are the roots of the equation:

ðlþ jÞðl2 þH1lþH2Þ ¼ 0 ð11Þ

where H1 and H2 are given in Appendix

According to the condition expressed by equation

(6) and the polynomial properties, equation (11) can

be written:

ðlþ jÞðl2 l2Þ ððlþH2=H1Þ ¼ 0 ð12Þ

where l2 < 2ðk1½S�0 þ k2 þ k7Þ; i.e.,jl2j @ jl1j; j
and, therefore, the explicit equations for [P] and [R]

will have only two exponential terms, those ones

involving in their exponents 2 j and l1, i.e. they will

have the same form as equations (9) and (10).

3. In the case that k1½S�0; k2; k7; k3½I�0; k4; j @

k5; k6 the slow transition corresponds only to the

inhibition and the explicit equations for [P] and [R] are:

½P� ¼ ½P�1 þ Aelt ð13Þ

½R� ¼ 2
jg

l
þ j½P�1t þ

jg

l
elt ð14Þ

wherel, [P]1 andg are given by equations (A28), (A29)

and (A40), respectively.

Materials and methods

The simulated progress curves have been obtained by

numerical solution [22] of the corresponding system

of differential equations using a set of arbitrary, but

realistic values of the initial concentrations and the

rate constants. The simulated errors with the mean of

0 and a specified S.D. were added using a random

normal distribution based on the algorithm of Box,

Muller and Marsaglia [23] and a computer program.

The analytical solutions of the system of differential

equations were obtained by the Laplace transform-

ation. The regressions were performed using the

software SigmaPlot for Windows 4.0 of Jandel

Scientific in a personal computer equipped with

an Intel Pentium III/850 MHz processor. The

enzyme reaction was always started by the addition

of the enzyme to a mixture of the substrate and the

inhibitor.

Results and discussion

We have obtained the explicit equations for the

formation of the product (P) of an enzyme reaction

and the one of the accumulation of composed (R)

that is originated from P in which a slow-binding

inhibition process proceeds according to Scheme 1,

assuming that the initial concentrations of the

substrate and the inhibitor are much higher than

that of the free enzyme (to ensure that the

concentrations of the substrate and the inhibitor

remain practically constant) and that a very fast

formation occurs of the enzyme-inhibitor complex,

EI, which is followed by a slow isomerization to an

EI* complex. Figure 1 shows the time progress curves

of all of the species of Scheme 1. They were plotted

using the numerical solutions of the set of differential

equations that describes the kinetics of Scheme 1.

Note that the progress curve of P has a maximal

value, [P]max. The corresponding value of the time,

tmax, can be easily determined experimentally. The

progress curve of the product reaches an inflexion

point, [P]inflex, at t ¼ tinf lex. The tmax- and tinflex-values

can be evaluated from the plot of d[P]/dt vs. time.
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The period of time elapsing to tmax, at which ½P� ¼

½P�1; t1, can be useful, since it allows the evaluation

of [P]1 without reaching the end of the reaction, i.e.

the [P]1-value can be obtained from tmax and tinflex.

If we denote the following quotient with q:

q ¼
tinflex 2 tmax

tmax 2 t1
ð15Þ

then it is easily demonstrated that q ¼ 1; if the curve

is described by an equation such as equation (9), i.e.

when the corresponding explicit equation has only

two exponential terms. If l does not vary linearly with

[I]0, then, according to equation (A28), the

mechanism is compatible with that of case 1. If l

varies linearly with [I]0, then, according to equation

(A38), the particular case 2 is suitable. In the case in

which j has a high value (case 3) the accumulation of

P and R takes place according to a uniexponential

equation, as was shown in the case of the slow

inhibition of tyrosinase of frog epidermis by

m-cumaric acid at pH ¼ 7 [16].

Kinetic analysis

The kinetic analysis suggested in this paper allows the

evaluation of the kinetic parameters of the reaction

described by Scheme 1 and the discrimination between

the particular cases presented. This analysis is based on

the progress curve of the product P or on the progress

curve of the species R which the immediate product is

transformed into. Next we summarize this procedure.

Analysis based on the experimental progress curve of the

product (P). For different values of the initial

concentrations of the substrate and the inhibitor

fulfilling the conditions indicated in the Theory

section, we obtain progress curves of the product

and the corresponding curves for the first derivative.

For each curve, the values of [P]1, [P]max, [P]inflex, t1,

tmax, tinflex and a0 are obtained as is described below.

Each curve of P is fitted at sufficiently long times (.

tmax) to a uni-exponential equation. From the plot of

ln ð½P�2 ½P�1Þ vs. time, we obtain one of the non-

linear parameters of equation (9) and the

corresponding linear parameter. With the tmax- or

t1-values, equations (A34) (or (A35)) permit the

evaluation of the remaining parameters of equation

(9). The non-linear parameter, which does not

depend on the concentrations, will be the j-value. If l

varies linearly with [I]0, then, according to equation

(A38), the particular case 2 may be considered.

From the plot of d[P]/dt vs. t, data points, which are

located near the d½P�=dt ¼ 0; are chosen. These points

are fitted using a polynomial of the type f ðtÞ ¼

a0 þ a1t þ a2t2 by the least-squares approximation.

The polynomial fitting can be carried out with the

Chebyshev polynomials [24] or the Marquardt

algorithm [25]. Commercial software packages for

the personal computer as SigmaPlotq (Jandel

Scientific), MathCadq (MathSoft Inc., Cambridge,

MA), Mapleq (Waterloo Maple Software, Waterloo,

Ontario, Canada), Deriveq (Soft Warehouse) can be

used. Once the coefficients of polynomial have been

determined, the tmax-value is obtained by solving the

equation a0 þ a1t þ a2t2 ¼ 0: The [P]max-value can be

evaluated by setting t ¼ tmax in equation (9) or by

solving the equation obtained after fitting to a

polynomial of the degree three of the points near

[P]max. The plot of d[P]/dt vs. t exhibits a minimum

value that allows the evaluation of the tinflex-value. If a

set of data points near this minimum is fitted to a

polynomial f(t) of the degree three, then the tinflex-

value will be one of the roots of equation df ðtÞ=dt ¼ 0;
i.e. one of the roots of the equation a1 þ 2a2t þ

3a3t2 ¼ 0 (see Figure 2a). Following a similar

procedure, the t1-value can be obtained by fitting

the data points near [P]1 of [P] vs. t to a polynomial of

the degree two and solving the equation a0 þ a1t þ

a2t2 ¼ ½P�1 (see Figure 2b). The value of f(t) at t ¼ 0;
i.e. a0, can be obtained by fitting to a polynomial of

degree two of a set of points of d[P]/dt vs. t located at

short time values. Once the polynomial has been

obtained, the independent term, i.e. the value for

t ¼ 0; will be equal to a0 (see Figure 2c). At longer

time values, the parameter q can be evaluated as

described above. equation (A32) allows us to evaluate

the constant k6. According to equation (A31), the plot

of [E]0/a0 vs. 1/[S]0 gives at constant [I]0 a straight line

with an ordinate intercept equal to 1/k7. The plot of

([S]0[E]0)/(j[P]1) against [I]0 yields at constant [S]0

according to equation (A29) a straight line with

ordinate intercept ðKm þ ½S�0Þ=k7 and slope Km(k5 þ

k6)/(KIk6k7). According to equation (A31), the plot of

Figure 1. Progress curves of the species involved in Scheme 1

obtained by numerical solution of the set of differential equations

that describes the kinetics of the enzyme system. The arbitrary

values used for the initial concentrations and rate constants are:

½E�0 ¼ 0:7mM; ½S�0 ¼ 1mM; ½I�0 ¼ 0:4mM; k1 ¼ 2:106 M21 s21;

k2 ¼ 2 s21; k3 ¼ 4:105 M21 s21; k4 ¼ 0:4 s21; k5 ¼ 0:2 s21; k6 ¼

0:1 s21; k7 ¼ 2 s21; j ¼ 0:1 s21:

C. Garrido-del Solo et al.312
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([S]0[E]0)/(a0) vs. [I]0 at constant [S]0 gives a straight

line of slope Km/(KIk7). The quotient between the two

slopes yields 1 þ k5=k6:

Analysis based on the experimental progress curve of the

species R. The analysis of the experimental results is

made in a similar form to that described previously

for the product. A simplified kinetic analysis was

carried out experimentally in a study of m-cumaric

acid acting as slow inhibitor of frog epidermis

tyrosinase [16], working at a pH adopted, so that j

was much greater than k5 and k6. At lower pH values

the dependence of [R] on t would correspond to a

biexponential equation (10).

Numerical example

To illustrate the procedure suggested here, we chose

a numerical example in which we obtain simulated

curves (shown in Figure 3) by numerical integration

of the differential equations (equation (A1) of the

Appendix) describing the behaviour of the enzyme

system using the arbitrary set of values of the rate

constants and initial concentrations listed in the

legend to Figure 3. Then, the simulated progress

curves are used as if they were experimental

progress curves. The values used in the simulations

fulfil the condition established in the Theory

section. Simulated experimental errors with an

S.D. of 1% were added as indicated in the

Materials and Methods section. Two sets of curves

we obtained, one at constant [S]0 (and varying [I]0)

and another at constant [I]0 (and varying [S]0).

We proceeded as indicated above with curve 9 of

Figure 3, in which the initial concentrations for enzyme,

substrate and inhibitor were 2 £ 1029 M; 1 £ 1023 M

and 9 £ 1025 M; resp. The values obtained for tmax,

tinflex and t1 are 17.60 s, 28.61 s and 6.64 s, resp. (see

Figures 2a and 2b). In this case, the parameter q is equal

to 1.005, which shows the bi-exponential shape of the

progress curve. Thea0-value was1:37 £ 1027 M s21 (see

Figure 2c). With the [P]1-value ð5:36 £ 1027 MÞ; the

equation (A34) and the plot of ln ð½P�2 ½P�1Þ vs time, we

obtained for l, j and A0 the values 20.0469 s21,

0.1585 s21, 21:020 £ 1026 M; resp. In this case l does

Figure 2. (a) Evaluation of tinflex. A set of points with low values of

d[P]/dt are chosen. These points are fitted using a polynomial of

degree three. One root of the derivative of this polynomial is tinflex.

(b) Evaluation of t1. Data points at t , tmax, which are located near

½P� ¼ ½P�1 are chosen. These points are fitted using a polynomial of

the degree two. One root of the equation f ðtÞ2 ½P�1 ¼ 0 is t1.

(c) Evaluation of a0. The first data points of d[P]/dt, i.e. data points

at low t-values, are fitted using a polynomial of the degree two.

The independent term of this polynomial is a0.

Figure 3. Progress curves simulated with added errors and

calculated (continuous lines) using equation (9) corresponding to

the proposed example. The values of the rate constants and

initial concentrations used are: k1 ¼ 1:106 M21 s21; k2 ¼ 800 s21;

k3 ¼ 4:105 M21 s21; k4 ¼ 1:5:102 s21; k5 ¼ 0:2 s21; k6 ¼ 0:03 s21;

k7 ¼ 150 s21; j ¼ 0:15 s21; ½E�0 ¼ 2 nM; ½S�0 ¼ 1 mM; ½I�0 ¼

10; 20; 30; . . .;90mM; for the curves 1–9, respectively.
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not vary linearly with [I]0, and, according to equation

(A28) the mechanism is compatible with that of case 2.

Following the procedure indicated above, according to

equation (A31) the plot of [E]0/a0 against 1/[S]0 gives

at constant [I]0 a straight line with ordinate

intercept (1/k7) 6:74 £ 1023 s (see Figure 4). The plot

of ([S]0[E]0)/(j[P]1) against [I]0, at constant [S]0, gives

a straight line with the ordinate intercept {ðKm þ

½S�0Þ=k7} 1:311 £ 1025 M s and the slope {Kmðk5 þ

k6Þ=ðKIk6k7Þ} 1:15 £ 1021 s (seeFigure5).According to

equation (A31), the plot of ([S]0[E]0)/(a0) vs. [I]0 gives at

constant [S]0 a straight line of slope {Km/(KIk7)} 1:73 £

1022 s: The quotient between the latter two slopes yields

{1 þ k5=k6} ¼ 6:65:
With these results and equation (A32), we have

obtained for the kinetic parameters k5, k6, k7, j, Km

and KI the values 0:16 ^ 0:02 s21; 0:028 ^ 0:002 s21;
149 ^ 3 s21; 0:156 ^ 0:003 s21; ð9:4 ^ 0:6Þ £ 1024 M

and ð3:7 ^ 0:4Þ £ 1024 M; respectively.
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[4] Jiménez M, Garcia-Canovas F, Garcia-Carmona F, Lozano

JA, Iborra JL. Kinetic study and intermediates identification of

noradrenaline oxidation by tyrosinase. Biochem Pharmacol

1984;33(22):3689–3697.

[5] Jimenez M, Garcia-Carmona F, Garcia-Canovas F, Iborra JL,

Lozano JA, Martinez F. Chemical intermediates in dopamine

oxidation by tyrosinase, and kinetic studies of the process.

Arch Biochem Biophys 1984;235(2):438–448.

Figure 5. (a) Plot of ([S]0[E]0)/(j[P]1) vs. [I]0 at constant [S]0

according to equation (A29). (b) Plot of ([S]0[E]0)/a0 vs. [I]0 at

constant [S]0 according to equation (A31).
Figure 4. (a) Plot of [E]0/(j[P]1) vs. 1/[S]0 at constant [I]0

according to equation (A29). (b) Plot of [E]0/a0 vs. 1/[S]0 at

constant [I]0 according to equation (A31).

C. Garrido-del Solo et al.314

Jo
ur

na
l o

f 
E

nz
ym

e 
In

hi
bi

tio
n 

an
d 

M
ed

ic
in

al
 C

he
m

is
tr

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
M

al
m

o 
H

og
sk

ol
a 

on
 1

2/
24

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



[6] Escribano J, Garcia-Canovas F, Garcia-Carmona F, Lozano

JA. Kinetic study of the transient phase of a second-order

chemical reaction coupled to an enzymic step: Application to

the oxidation of chlorpromazine by peroxidase-hydrogen

peroxide. Biochim Biophys Acta 1985;831(3):313–320.

[7] Garrido-del Solo C, Garcı́a-Cánovas F, Havsteen BH, Varón R.

Kinetics of an enzyme reaction in which both the enzyme-

substrate complex and the product are unstable or only the

product is unstable. Biochem J 1994;303:435–440.

[8] Morrison JF, Walsh CT. The behavior and significance of slow-

binding enzyme inhibitors. Adv Enzymol 1988;61:201–301.

[9] Szedlacsek S, Duggleby RG. Kinetics of slow and tight-binding

inhibitors. Meth Enzymol 1995;249:144–180.

[10] Sculley MJ, Morrison JF, Cleland WW. Slow-binding

inhibition: The general case. Biochim Biophys Acta

1996;1298:78–86.

[11] Garrido-del Solo C, Garcı́a-Cánovas F, Havsteen B, Varón R.

Kinetic analysis of enzyme reactions with slow-binding

inhibition. BioSystems 1999;51:169–180.

[12] Valero E, Garcı́a-Moreno M, Varón R, Garcı́a-Carmona F.

Time-dependent inhibition of grape polyphenol oxidase by

tropolone. J Agric Food Chem 1991;39:1043–1046.

[13] Dharmasena SP, Wimalasena DS, Wimalasena K. A slow-tight

binding inhibitor of dopamine betamonooxygenase:

A transition state analogue for the product release step.

Biochemistry 2002;15(41):12414–12420.

[14] Zaborska W, Kot M, Superata K. Inhibition of jack bean urease

by 1,4-benzoquinone and 2,5-dimethyl-1,4-benzoquinone.

Evaluation of the inhibition mechanism. J Enz Inhib Med

Chem 2002;17:247–253.

[15] Duggleby RG. Progress curves of reactions catalyzed by unstable

enzymes. A theoretical approach. J Theor Biol 1986;123:67–80.

[16] Cabanes J, Garcia-Carmona F, Garcia-Canovas F, Iborra JL,

Lozano JA. Kinetic study on the slow inhibition of epidermis

tyrosinase by m-cumaric acid. Biochim Biophys Acta

1984;790(2):101–107.

[17] Waley SG. Kinetics of suicide substrates. Biochem J

1980;185:771–773.

[18] Tatsunami S, Yago N, Hosoe M. Kinetics of suicide substrates.

Steady-state treatments and computer-aided exact solutions.

Biochim Biophys Acta 1981;662:226–235.

[19] Tsou C-L, Meister A. Kinetics of substrate reaction during

irreversible modification of enzyme activity. Adv Enzymol

1988;61:381–436.

[20] Topham CM. A generalized theoretical treatment of the kinetics

of an enzyme-catalysed reaction in the presence of an unstable

irreversible modifier. J Theor Biol 1990;145:547–572.

[21] Wang Z-X. Kinetics of suicide substrates. J Theor Biol

1990;147:497–508.

[22] Garcı́a-Sevilla F, Garrido-del Solo C, Duggleby R, Garcı́a-
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Appendix

Matricial equation that describes the kinetics of the

species in Scheme 1

½P�1 ¼
k1k4k6k7½S�0½E�0

jðk1k4k6½S�0 þðk2 þk7Þððk5 þk6Þk3½I�0 þk4k6ÞÞ

ðA2Þ

A0 ¼2
k1k7½S�0½E�0{j 2 2 ðk4 þk5 þk6Þjþk4k6}

j
Q3

p¼1 ðlpþ jÞ

ðA3Þ

Ah ¼
k1k7½S�0½E�0{l2

hþðk4 þk5 þk6Þlhþk4k6}

lhðlhþ jÞ
Q3

p¼1
p–h

ðlp2lhÞ

ðh¼ 1;2;3Þ

ðA4Þ

A0 ¼2 ½P�1þ
X3

h¼1

Ah

 !
ðA5Þ

rh ¼
j

lh
Ah ðh¼ 1;2;3Þ ðA6Þ

r0 ¼2 A0 þ
X3

h¼1

rh

 !
ðA7Þ

d½E�=dt

d½ES�=dt

d½EI�=dt

d½P�=dt

d½S�=dt

d½I�=dt

d½EI* �=dt

d½R�=dt

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

2ðk1½S� þ k3½I�Þ k2 þ k7 k4 0 0 0 0 0

k1½S� 2ðk2 þ k7Þ 0 0 0 0 0 0

k3½I� 0 2ðk4 þ k5Þ 0 0 0 k6 0

0 k7 0 2j 0 0 0 0

2k1½S� k2 0 0 0 0 0 0

2k3½I� 0 k4 0 0 0 0 0

0 0 k5 0 0 0 2k6 0

0 0 0 j 0 0 0 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

½E�

½ES�

½EI�

½P�

½S�

½I�

½EI* �

½R�

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ðA1Þ
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There are the following mutual relationships:

l1 þl2 þl3 ¼2F1 ðA8Þ

l1l2 þl1l3 þl2l3 ¼F2 ðA9Þ

l1l2l3 ¼2F3 ðA10Þ

The coefficients F1, F2 and F3 of equation (5) are

given by the equations (A11)–(A13) resp.

F1 ¼ k1½S�0 þk3½I�0 þk2 þk4 þk5 þk6 þk7 ðA11Þ

F2 ¼ k1ðk4 þk5 þk6Þ½S�0 þk3ðk2 þk5 þk6 þk7Þ

£ ½I�0 þðk2 þk7Þðk4 þk5 þk6Þþk4k6 ðA12Þ

F3 ¼ k1½S�0k4k6 þðk2 þk7Þ

£ ððk5 þk6Þk3½I�0 þk4k6Þ ðA13Þ

According to polynomial properties and equation (6)

l3 <F1 ðA14Þ

l1 þl2 <2F2=F1 ðA15Þ

l1l2 <F3=F1 ðA16Þ

and:

l3 <2ðk1½S�0 þk2 þk7Þ ðA17Þ

l1 þl2 ¼2 k4 þk5 þk6 þ
k3Km½I�0
Kmþ½S�0

� �
ðA18Þ

l1l2 ¼ k4k6 þ
k3Kmðk5 þk6Þ½I�0

Kmþ½S�0
ðA19Þ

Equation (A18) readily yields:

ðk4 þk5 þk6Þ, jl1 þl2j

, ðk3½I�0 þk4 þk5 þk6Þ ðA20Þ

Particular case 1:

According to equations (8) and (A11)–(A13) we can

write:

F1 < k1½S�0 þ k2 þ k7 ðA21Þ

F2 < k1½S�0k4 þ ðk2 þ k7Þðk3½I�0 þ k4Þ ðA22Þ

F3 < k1½S�0k4k6 þ ðk2 þ k7Þ

£ ðk3½I�0ðk5 þ k6Þ þ k4k6Þ

ðA23Þ

where, according to polynomial properties:

l3 < F1 ðA24Þ

l1 þ l2 < 2F2=F1 ðA25Þ

l1l2 < F3=F1 ðA26Þ

A0 ¼ 2ð½P�1 þ AÞ ðA27Þ

l ¼ 2ðk5 þ k6Þ þ
KIk5ðKm þ ½S�0Þ

KI ðKm þ ½S�0Þ þKm½I�0
ðA28Þ

½P�1 ¼
KIk6k7½S�0½E�0

j{Km½I�0ðk5 þ k6Þ þKIk6ðKm þ ½S�0Þ}

ðA29Þ

A ¼ 2
j½P�1ðk6 þ lÞ

k6ð j þ lÞ
ðA30Þ

a0 ¼
KIk7½S�0½E�0

KI ðKm þ ½S�0Þ þKm½I�0
ðA31Þ

k6

j
¼ 2

½P�1l

a0

ðA32Þ

½P�max 2 ½P�1 ¼ A0 1 þ
j

l

� �
e2jtmax ðA33Þ

tmax ¼
1

j þ l
ln

A0

A

j

l

� �
ðA34Þ

l ¼
ln 1 þ ½P�1

A

� �
t1

2 j ðA35Þ

Particular case 2

Coefficients of equation (11):

H1 ¼ k1½S�0 þ k2 þ k7 ðA36Þ

H2 ¼ k1k4½S�0 þ ðk2 þ k7Þðk3½I�0 þ k4Þ ðA37Þ

l1 < 2
H2

H1

¼ 2 k4 þ
k3Km½I�0
Km þ ½S�0

� �
ðA38Þ

l2 < 2ðk1½S�0 þ k2 þ k7Þ ðA39Þ

Particular case 3

g ¼ 2
½P�1ðk6 þ lÞ

k6

ðA40Þ

C. Garrido-del Solo et al.316

Jo
ur

na
l o

f 
E

nz
ym

e 
In

hi
bi

tio
n 

an
d 

M
ed

ic
in

al
 C

he
m

is
tr

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
M

al
m

o 
H

og
sk

ol
a 

on
 1

2/
24

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.


